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ABSTRACT

An attempt is being made to obtain approximate solu-
tions of improved accuracy for a class of differential equations

of the form
2
i—%+ eu(x)%% + wiy =0,
dx .

where ¢ is a real parameter less than unity, W, is a positive

real constant of order unity, and p(x) is a singular function
.0of x in the region of interest.

It does not appear to be possible to obtain a general
analytic expression for the error estimate of the approximate
solution. For the case u(x) = x“z, however, it is shown that
the approximate solution is accurate to 0(52), as x ~ 0 from
negative values, by comparing it with the numerically integrated
solution. For the same case, the approximate solution is orders
of magnitude more accurate than Poincare's first order perturba-

tion solution, which is accurate to 0(c> en |[x|/]|%x|) as x » 0. The
approximate analytic solution of the present method can yield
significant mathematical and physical insight to actual problems.

This work arose in search for analytic solutions to a
linearized form of the restricted three-body problem.
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Introduction

Many physical problems are characterized by the
presence of a perturbing force which can be either constant or
varying. The exact solution of a simple linear oscillator with
constant damping is well known, but that with arbitrarily vary-
ing damping is unobtainable without resorting to numerical
integration. For example, the following differential equation

for a linear oscillator with a perturbing singular damping term
cannot be solved exactly by presently known methods and functions
:—x§+e;§-§§ + wly = 0 (1)
where ¢ is a positive real parameter much less than unity and mz a
positive real constant of 0(l). It will be shown that for |x| > /e
Poincaré's perturbation method of small parameter expansion will

yield a first order homogeneous solution accurate to O(ez lﬁﬁ

which is singular as x+0. For 0 < |x| < /¢ higher order pertur-
bation solﬁtion cannot improwve the accuracy of the solution in
the neighborhood of the singular point at x=0, because of the
singular nature of the perturbing term in Eq. (1).

It is the attempt of this paper to show a new methoa of

obtaining approximate solutions for a class of second order
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ordinary linear differential equations of the form (prime
denotes derivative)

y" + eu(@y' + oy = 0. (2)
For the case u(x) = xm2 it is shown that the approximate
solution has an error of O(ez) as x + 0 . This error is
obtained by comparing the approximate solution with the
exact solution obtained by numerically integrating Eq. (1).
It has been shown in a previous paper{l] that when the
coefficients eu(x) and wi are related in certain specific

ways, Eq. (2) can be solved exactly by means of elementary

functions in finite terms. In fact, if ep(x) = mix or
CX -OX
eu(x) = 2¢ E__:EE___, where ¢ and k are two arbitrary
eC¥4xe X

constants, the coefficients eu(x) and wi can be shown to
be related.

To solve Eg. (2) in a general form, we first
transform it into a first order nonlinear differential equa-
tion of the Riccati form and then solve the nonlinear
equation approximately. The accuracy of the approximate
solution thus obtained for the case p(x) = sz is oxders
of magnitude better than that obtained by Poincaré's firstr
order small parameter expansion method in a region where

x + 0 from negative values.

Formulation and Exrror Estimate

For simplicity we shall assume that u(x) is real and
analytic except at a finite number of poles. 1In an attempt to
obtain the general solution of Eg. (2), we let one of its two

solutions take the following foxm[l]:
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X

S 2 - 2 cu(xlax

— 1 M
Yy, = Aoe (3)

and the other solution becomes

X 1 -X
J (z - 5 ep)dx | -2; 2dx
Vo = BnE Xy i e %5 d (4)
2 0 "Xi X,

o and B, are constants to be determined by the initial

conditions at X .

where A

Substituting y = Y1 + Y, into Eg. (2), we obtain

(z' + 22

2 1 1 22
+ W + > g’ - 7 E ¥ )y1 = 0. (5)
Excluding the trivial solution yl=0, we have the condition for

obtaining the solution of Eg. (2) as:

Z' + Z2 = -wi + leu' + I (6)

which is recognized as a nonlinear ordinary differential equation

(1112] (e any

in canonical Riccati form. In fact it is well-known
second order ordinary linear differential equation can be trans-
formed into this form.

In an effort to solve Eg. (6) in terms of p(x), we first

try the apparently simplest approximate solution in the form

Za=a+bu, (7)

where a and b are constants to be determined.
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Differentiating and squaring Eq. (7), we obtain
2 2 2 2
yl(Z'a + za) = (bu' + a“ + 2abu + by )yl° (8)

Comparison of Egs. (5) and (8) yields the constants

a=1>1i1iu and b = %e . (9)

122
€

2
Thus vy (2} + 22) =y (-ul + eu' + Fe2ud)t E, (10)

where

= +
E =2 lw enyy (10a)

is an error term which appears in Eg. (2) because of the approx-
imate nature of Eg. (7) as a solution of Eqg. (6) or (2). It is
important to note that the error term as shown in Eq. (1l0a) is
imaginary and is simply proportional to the product of the per-
turbing damping term and the undamped frequency of the original
differential equation (2). The significance of this error term
being imaginary will be exploited later. Substituting Eq. (9)
into Egs. (7), (3) and (4), we obtain the approximate solution

of Eg. (2) as

yo = e iA0+B0 | e e “x. dx = AOyl + B0y2 . (11)

It turns out that Eg. (11) as an approximate solution to Eg. (2)
has a very simple intuitive interpretation. The first solution

¥ is simply a solution, in complex form, of Egq. (2) with the
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damping term neglected and the second solution Yo is obtained by
employing y, as if y; were the exact solution of Egqg. (2). A
measure of the accuracy of Eg. (11) can be first tested by two
extreme cases; namely, (i) when ¢ or u(x) approaches zero,

Egq. (11l) reduces to the exact solution of a linear oscillator,
(ii) when W, approaches zero, Eg. (1ll) reduces to the exact
solution of y" + ep(x)y' = 0. Accordingly the solution in the
form of Eg. (l1) is expected to be very accurate even in the
middle region (composite region) where EH=w and an example to

be shown later indicates that this is indeed true.

Since, in general, we have no way of obtaining the
exact solution of Eq. (2), it is very difficult to obtain even
the error bound of the approximate solution in analytic form.

The numerical accuracy of Eg. (ll) can be obtained for any
particular u(x), however, by comparing it with the solution
achieved by numerically integrating the differential equation (2).
It is reasonable to assume that the error term % iwceul of Eq.
(10a) might give us an indirect measure of the accuracy of the
approximate solution Yo of Eq. (l1l1). The ratio of the error term
to the exact (Z'+Z2) provides relative comparison of the accuracy
of the approximate solution in the region of interest where p (x)
approaches a singularity. Since the error term is imaginary and
the exact (Z'+ZZ) is real due to the specification that wor €4
and u(x) are all real quantities, the relative error can be

expressed as:
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- 1
35 ﬂl
(z'+2%)2 + (wceu)21 -z vzt e en 012
E = — é ={1 + 5 -1
r 7' + % | z'+2°l |
M w € 2 2
A - R | chils (12)
z \Z' + sz 2 -w_ + % eu'+% ezuzj

Equation (12) assumes the following simple forms:

2

. 2 2 2
Ep= %i; when w, >>e"u and en', (13a)
2
. “c 2 2.2
Er = o™ when e >>wc and eu’, (13b)

We note from Egs.(13) that the errors in two separated regions

centered around Xq and x? could be of the same order of magnitude
ep(x w
when, for example, - < » Fulfillment of such a con-
W eu(xz)

dition may lead to the fact that errors could remain fairly constant

over the region between Xq and Xyo This will be shown to bg true
in a numerical example.

Another indirect error magnitude estimate can be made by
comparing the error term E = iwceuyl of Eq. (10a) with that obtained

by Poincare's perturbation method. The first order perturbation
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solution of Eg. (2) has an error of o(szyznd) and has the form

~-X

Y = Yotnh + Y15t © YOth"' %; U(E)y(')th(g) Sin wc(x"i)dgl
“xi
(14)
where yOth’ Yist and Yond are, respectively, the zeroth, first,
and second order solutjons, and Yorp= CSin mc(x—xo) with
C and Xg as constants.

Substituting Eg. (14) into the differential equation (2) yields

an error term (due to the first order perturbation solution):

5 - X X 2 i
Ep = _Ezuyllst = eTuug ‘L ”ybthdx + wcjr u(z)yéth(z)dz
Lx. X, “E.
i - i i
Sin wc(x—g)daj. (15)

Eg. (15) is a real guantity since the terms involved are specified
to be real. To compare the error term of Eg. (10a) with that of
Eq. (15), it will be convenient to specify the general functional

form of the singular coefficient u(x). Let u(x)= —% and x vary
% .

in the region where 0 <« |x| 5 ¢, then from Eq. (10a) we have, as x

approaches the singular point x=0,

\ iwex . . C
E = iw,ene c* = 3

where n is an integer.
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From Eg. (15) we have for the first order perturbation

solution,

!

{

| | (16)
\ x

th

It can be shown that for the k order perturbation solution

In the region where 0 <<|x| £ ¢, E is always smaller than Epk'
Accordingly it appears to be that in some cases the present approximate
solution is more accurate than Poincare's perturbation solution
as u(x) approaches its apparent singular point. Using the same

relative error criterion used in Eq. (12), we obtain for the

perturbation method

(z' + z2) (17)

Comparison of Egs. (12) and (17) indicates that the region in
which the accuracy of the present approximate solution is better
than that of the perturbation solution can be extended from the

region 0 < |[x| <e to the region where |x| is slightly > e.
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At this point it is appropriate to ask the question what
is the physical meaning and- significance of the error term
iwceuyl being imaginary? It is evident that if we had been able
to find the exact solution of Eq. (6), the exact (Z' + Zz) would
be pure real due to the fact that WorEs and p are all specified
to be real quantities. The presence of the pure imaginary error
term thus gives a measure of error in Z,- However, the percentage
error Er in terms of the exact (Z2' + ZZ) for the case of a small
imaginary error term should be much less than that for the case

of a real error term of the same magnitude. 1In faét we have for

w_€u
the real error term case E_ = _g____f + which is usually much
Z' + 2
less than unity and is accordingly orders of magnitude larger
i w_EH
than i< | of Eq. (12). This is why it is important to
2 iz 4+ 32

have a small error term which is imaginary.
Having conceptually understood the problem, we are now
in a position to be able to improve the accuracy of the approximate

solutio.: by letting Za = Z + lZai and.then adjusting Zar and Zai

ar
2 2 1/2

such that the magnitude (Zar + Zai) may approach closer to the

1/2
2 2
(Zar + Zai)

exact Z. When = 7, we have the exact solution -to-

Z_ .
gether with the phase information 6 = tan~1 fii which is the phase
ar

delay or advance with respect to the unperturbed linear oscillator

case. To state the problem more precisely, we should adjust Z,r

and Zai in such a way that the magnitude of (Zé + Zi) approaches

1 , 2 .
that of Z° + Z2 = —wg + % eu' + I szuz, i.e., Zé + Za should lie

as close as possible (a) to the circle of radius equal to (2' + Zz)

and (b) to the real axis (Z2°' + Zz).
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According to the arguments of the preceding paragraph
we can improve the solution accuracy of Eq. (1l1l), i.e., Eg. (7).,
by reasoning that the constants a and b in Eq. (7) should have
such values that Eq. (8) would have, in addition to the imaginary part

of the error term, a real part of the error term with a sign. opposite
to (Z2' + Zz) and with a magnitude much smaller than the imaginary

part. Let both constants a and b be complex, then

za = (ar + iai) + (br + ibi)u . (18)

Differentiating and squaring Egq. (18) yields
§ 2_ 3 [ 2_2 »
Za + 2, = (br + 1bi)u + (ar ai) + i 2arai
+ 2[(arbr - aibi) + i(arbi + aibr)]u

2 2 . 2
+ [(br - bi) + 1 2brbi]u . (19)

Comparing Eg. (19) with Eg. (6), we have the following equations

-~

a2 - a% = 42,
r i c !
: ] ._1-_ 1
(br + 1bi)u =5 eu' ,
2 2 . 2 _1 22 i
(b, + bl + i 2b b )u” =7 e%u”, , (20)

. o =
i aral 0,

2[(a b, - aibi) + i(arbi + aibr)]u =0 .
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The system of Eqs. (20) is overdetermined since there are only
four constants to be determined by eight equations. Guided by
the reasoning mentioned in the preceding paragraph, we can choose
the constants by reducing or minimizing the error magnitude in
Eg. (10) in the region of interest. The simplest and best choice

of these constants appears to be:

ar = 0 7 al = i-wc 7
(21)
— e —
br =3 ’ bi = kebr ’

where k is an adjusting parameter, varying in the range approx-
imately between (0 and +1, to be explained later. Substituting

Eq. (21) into Eg. (10), we obtain

Z; + Zg = (—wg + Zep' + % ezuz) - kezu(wc + %kszu)

i wLEM + % kt»:z(eu2 + u')v

Il
~—~
o3
4=
[

N

~—

!

Fr + iFi, (22)
where

F_ = kszu(wc + % ke2y) and F. = wen + %- kel (ep? + u').  (22a)

Equation (22) reduces to Eg. (10) when bi = 0. Note that the real
part of the error is in fact much smaller than the imaginary part

of the error by a factor of about €. The relative error then is
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1
[zr + 22 - ¢ )2 + 73] 2 - (20 + 22
E = r 1 -
r Z2' + 2
(23)
2, .2 -
F¢ + F° F
= = 12 5 = £ 5 = —r 'F2 + F2 - 2Fr(Z‘ + zz)
2(z' + 2%) 7' + 2 2(z' + 752

-

where both F. and F; are functions of the parameters k and ¢.
Equation (23) reduces to Eq. (12) when k=0, i.e., when bi=0. It
is evident from Eq. (23) that the relative error Er will wvanish
if Fi + Fi = 2Fr(Z' + ZZ) at certain point Xo- This implies that
an exact solution can be obtained at the point X around which the
error of the approximate solution changes sign. For a prescribed
Xg where an exact solution is most desired, there is always a

corresponding value of the parameter k which can be obtained by

setting Eqg. (23) equal to zero: i.e.,

Fi + Fi —2Fr(Z'+Zz) = (wcsu)2 + (%‘-keu')2 + kezu {.sz
1. 2 ) 1 2 2 2 2
+ 3 t3w e + (lwfe Ju'lkeu + 7(l+k £ )mce 0
[ : h
+ 3 gl -2 ke?? ) =0 (24)
L J J

Since ¢ is much less than unity and Wg close to unity Eq. (24)

" can be simplified as

2
(mceu)2 + (%keu')2+kezu[2wg + %keu'n+%mcezu +%k52u3 =0 . (25)
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For a given u(xe), Eq. (25) is a quadratic equation in k.
Now substituting Eq. (21) into Egs. (7), (3), and (4),

we obtain the general approximate solution of Eq. (2) as

X - X X
iw x + -Lkezj udx -, -i 2wcx + kezfx(udx - fxudx
Yy = e - ¢ 2 i f;Ak+ By | : i e i ax
i /X, .

which reduces to Eq. (1l1l) by setting k=0.

Note that Eq. (26) is written in such a way that we
require the coefficient of the dominant term of the function u(x)
to be positive unity, i.e., the sign and the coefficient of the

dominant term of u(x) must be absorbed into ¢.

In passing we mention that the constants in the over-
determined system of Eq. (20) can also be optimally determined
in the region of interest in the least squares sense whenever
the functional form of u(x) is given.

Comparison Examples

In the preceding section we have argued qualitatively
that the approximate solution in the form of Eq. (26) should‘be
more accurate than the perturbation solution of Eq. (2) in the
region where there is a singular point. Here we attempt to show
quantitatively the numerical accuracy of the solution of Egs. (1l1)

and (26) for a specific differential equation with u = lf’ i.e.,
X

yu + e __-%yg + w2 y = 0, (27)
X

C
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where we let w, = l and ¢ = 10"4. The approximate solution of

Eq. (27) via Egs. (11) and (26) becomes, respectively,

. i . €
iw X (7 =i2w0 . x =
Yo e AO + BO; e e’ dx! Yr=0 ) (28)
X
i
or
2y - X : 2\ )
1!wcx-§; —if2wx-k}€{|' i—
Y = € | A, + By e ! ce” dx| (29)
,./xi
-1i(w X: - ke | :
where Ay = y(xi)e ¢ lel ' }
(29a)
’ ke | %T 1:wcxl - %;2:
B = y'(x;) - ifu  + 2)y(xl) el e ! i,
: 2xi !

and y(xi) and y'(xi) are prescribed initial conditions.

Note that Eq. (28) can be obtained from Eq. (29) by setting k=0.
Comparison of solutions of Egs. (28) and (29) and the lst order
Poincare solution [Eg. (14)] with the numerically integrated

solution of Eq. (27) should give us a clear picture of the accuracy
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of the solutions in the form of Eq. (28) or (29). Before carrying
out the actual numerical comparisons, we shall first obtain the
Poincare solution of Eq. (27). The formal Poincare solution

has the form

— 2 3
y = YOth + eylst + € yan + € Y3rd + . e e s s e e 5 (30)

together with the initial boundary conditions

i
o

Vgt (X3) = Yopg(X5) = ¥3.4(%;)

yist(xi) = yénd(xi) = yérd(xi) =0
1 7%
where vy, =-— | -—5 Yi_p (€)Sinw (x-£)dE, k=1st, 2nd, 3rd, . . .
c /x, ¢
* (31)
PR T _ . _ 1
Yige = C 7§5L51nwc(x XO) + Slnwc(x+x0 2xi)j
X
+ wcslnwc(x+x0) - 3 Sln2mcxdx
i
,,x -
, N ‘
+ wcCoswc(x+x0) e z Coschxdx = 0 (1nx) , (31a)

i -
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.X
= - 1 1 . _ lnx -
Yona = “c x 27 y'lst(g)Slnmc(X g)ag = 0 X ) (31b)
i
s lnx . 1lnx
y3rd = 0(;-2— ? y4th = C(x—3—) F e s e e e o (31c)

It is evident that the explicit evaluation of Yong ©F higher order
solution is extremely complex and usually impractical. Since

it requires many lines to write down the expression for Yong'r We
indicate instead the order of magnitude as shown in Eq. (31b).

Thus Eg. (30) becomes

y = CSinu_(x-x,) + eo(lnx) + 320(%’&) + 530(33-‘32‘-) + . . . (32)
X

Equation (32) indicates that the inclusion of a finite number of
higher order solutions does not improve the accuracy of the
solution when |x| s</e. This is so because of the presence of the
apparent singular perturbing term —% ' in Eq. (27).

To carry out the actual iumerical comparison, we use
the first order Poincaré solution, i.e., the first two terms of
Eq. (32) where we arbitrarily let ¢=1 and Xg=-2.4. Since we are
interested in the behaviour of the solution near the singular
point x=0, we let the integration limits vary from the initial
limit x=-0.3 to the upper limit x»0. The initial boundary con-

ditions for Egs. (28) and (29) are
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y(xi) CSlnwc(wao) = 8in 2.1

H - 1
and Yy (xi) CmcCoswc(x xo) Cos 2.1

All computations are programmed in double precision, and the
required accuracy of the numerical integration solution of Eg. (27)
is set at 10-11. Table I shows the numerical values (together
with phase information) of the solutions obtained by the three
different methods and Fig. 1 shows the difference between the
numerically integrated solution and the solutions obtainéd by
other methods. Since the solution value varies between 0.86 and
0.68, Fig. 1 practically represents the relatjive errors also.
Fig. 2 shows, for various values of k in Eq. (27), the phase
advance information with respect to the undamped oscillatory
motion. In Fig. 1 the Poincaré perturbation solution is computed
only up to x = —10~4 , since the first order solution is no
longer valid for x>--10—4 as seen from Eg. (32). We also note

that the error of the first order perturbation solution indeed
increases according to ezo(lgi). Fig. 1 indicates that the solu-
tions of the present method are a few orders of magnitude more
accurate than the first order perturbation solution as x appréaches
the apparent singular point. In fact the solution is nonsingular
as x approaches zero from negative values. Errors in the region
from x = —10—1 to x+»-0 are practically uniform for both k=0 and

k=1. When k=0 the solution is slightly too large; when k=1 it

is slightly too small. For a particular value of ke in between
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0 and 1, the solution error changes sign at a point Xq (cor-
responding to ke) where an exact solution is located as pre-
dicted by Eg. (25). Accordingly, there is an optimum value
of k which minimizes errors in the region near x=0. By vary-
ing k, the optimum value appears to be near 0.8315 as seen from
Fig. 1. At this value of k, the solution not only gives the
most accurate absolute value but also the most correct phase
advance information as seen from Fig. 2. In most physical
problems, except in space trajectory studies, such an extreme
accuracy is not necessary and there is no need to optimize the
value of k. Accordingly it is recommended that one should set
k=1 in Eg. (26) to obtain a simple yet very accurate analytic
solution.

Having shown the extreme numerical accuracy of Eq.
(29) as an approximate solution of the differential equation
(27) in the region including the singular point, we ask the
question how sensitive is the accuracy of the solution to the
magnitude of the perturbing parameter e£? Again we cannot find
an answer in analytic form. For each value of ¢, however, the
difference between the exact solution obtained by numerically
integrating Eg. (27) and the approximate solution of Eq. (29)
should give us some insight. For this comparison, we shall use

the approximate solution in the form of Eg. (29) with k=1.
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This is done for values of ¢ = 10 %, 107>, 1074, 1071 and 1,
and is shown in Fig. 3 which is plotted from the computed
results shown in Table II. From Fig. 3 we can conclude that
the error of the approximate solution of Eq. (29) is roughly
proportional to e2. It is also seen that for each value of ¢
the errors remain fairly constant as x approaches zero.

Turning our attention back to Eg. (27), we note that
it has an irregular singularity at x=0 in the coefficient of y'.
Accordingly ,one of the solutions of Eq. (27) is analytic and the

(3] at x=0. This is

second solution has an essential singularity
in fact what our approximate solution in the form of Eg. (29)
shows for the case u(x)= x_z. There is no singularity in the
solution as x approaches zero from negative values as mentioned
earlier, but the essential singularity in the solution appears
as x approaches zero from positive values.

We have shown that Eq. (29) is an approximate solution
of the differential equation in the form of Eg. (1), yet we
cannot show the accuracy estimate of the approximate solution
for the general case of u(x)=x 7. For the case u(x)=xn2, we
have shown the approximate solution is accurate to 0(52), as
x+0  from negative values, by comparing it with the numerically
integrated solution. To obtain the accuracy of the approximate

solution for other cases, it would be necessary to have a

similar numerical comparison.
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Inspection of Eq. (26) indicates that e X is the
controlling factor in the integrand since the remaining factors in
the equation are either constants or phase factors. As x approaches
X
-eg | pdx
.

X, will likewise approach zero

the singular point of u(x), e i

or infinity, depending on (a) the sign of x in the region of
interest, (b) the sign of eu(x), and (c) the fact whether u(x)

is even or odd. In general, we can state that when

X
€ ndx
e X, approaches zero as x approaches the singular point the
SX
-¢ udx
approximate solution approaches a constant. When e 'xi

approaches infinity as x approaches the singular point, the
approximate solution and its error both become singular.

In passing we mention that Eg. (1) with a forcing term
added in fact can be derived from a linearized restricted three-
body problem describing a body of negligible mass moving under
the influence of the sun and aiming to impact a fictious point
mass planet. In this case y represents the reciprocal of the
distance between the sun and the spacecraft and x represents the

angle between the sun-planet line and the sun-spacecraft line.
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Physically it is quite clear that y must remain finite as

X - 0 from negative values and y does not have any physical
meaning after the impact, i.e., mathematically Eq. (1) does
not represent the particular physical problem in the positive
X region.

Conclusions

It has been shown by heuristic arguments that a
possible approximate solution to the differential equation
(2) has the form of Eg. (26). Since the exact solution of
Eg. (2) is not available, it is in general very difficult
to obtain an analytic expression for the error estimate of
the approximate solution. For the case p(x) = x_2, however,
we have shown that the approximate solution is accurate to
0(22), as x » 0 from negative values, by comparing it with
the numerically integrated solution. The approximate
solution is orders of magnitude more accurate than Poincare's
first order perturbation solution in the region near the
singular point of p(x).

The approximate analytic solution of the present

method can yield significant mathematical and physical insight

to actual problems.
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TABLE | NUMERICAL COMPARISON OF SOLUTIONS

X YNi vp Yk=0 Yie=1
3x 107 0.863,209,366,648 0.863,209,366,648 0.863,209,366,649 ,1.44° x 10717 0.863,209,366,649 ,2.88° x 10”17
2x10"  0.808,500,274,368 0.808,500,274,562 0.808,500,274,383 ,4.31° x 1074 0.808,500,273,775 ,9.31° x 1074
1x 101 0.745,730,231,672 0.745,730,236,130 0.745,730,232,162 ,2.69° x 103 0.745,730,228,663 ,2.69° x 103
1x 102 0.682,963,384,873 0.682,963,644,168 0.682,963,395,159 ,1.52° x 1072 0.682,963,377,086 ,1.52° x 1072
-1x 103 0.676,522,149,188 0.676,525,553,550 0.676,522,174,303 ,2.83° x 102 0.675,522,141,219 ,2.86° x 102
1x10%  0.676,000,129,830 0.676,031,393,989 0.676,000,165,951 ,3.94° x 1072 0.676,000,122,023 ,4.22° x 102
1x10°  0.675,989,168,251 0.675,989,206,029 ,4.37° x 1072 0.675,989,160,619 ,7.23° x 1072
%10 0.675,989,168,220 0.675,989,206,000 ,4.42° x 1072 0.675,989,160,591 ,3.31° x 107"
A1x107  0.675,989,168,219 0.675,989,205,999 ,4.46° x 10" 0.675,989,160,500 ,2.98°

X Y- Ve YNt~ Yk=0 YNI - Vie=1
3x 107! 0 874 x 10713 8.74 x 10713
2 x 107! -1.94 x 10710 4151 x 107 5.93 x 1010
-1 x 107! -4.46 x 1079 -4.90 x 10710 3.01x 1079
-1 x 1072 259 x 1077 -1.03 x 1078 7.79 x 1079
1% 103 -3.40 x 1078 257 x 1078 7.97 x 1072
-1 x 107 -3.13 x 1072 -3.61x 1678 7.81 x 1072
-1 x 107 378 x 1078 7.63 x 1079
-1 x 1078 378 x 1078 7.63 x 1072
ax 107’ -3.78 x 1078 7.63 x 107




TABLE Il NUMERICAL COMPARISON OF SOLUTIONS

X O € =103 € =102 € = 107" € =1
03 y= 0.863,209,367 0.863,209,367 0.863,209,367 0.863,209,367 0.863,209,367
0.2 0.808,500,274 0.808,535,032 0.808,875,614 0.811,604,511 0.726,263,869
1071 0.745,730,229 0.745,954,706 0.748,134,341 0.764,482,024 0.708,624,475
1072 0.682,963,377 0.684,381,156 0.696,577,684 0.747,712,320 0.705,580,025
1073 0.676,622,141 0.679,156,911 0.695,413,136 0.747,712,268 &
1074 0.676,000,122 0.679,046,496 0.695,413,133 r "
-107® 0.675,989,161 " " " "
1078 0.675,989,161 o g o %
03 v~ 0.863,209,367 0.863,209,367 0.863,209,367 0.863,209,367 0.863,209,367
0.2 0.808,500,274 0.808,535,092 0.808,881,507 0.812,176,793 0.833,280,389
107! 0.745,730,232 0.745,955,006 0.748,163,625 0.766,848,989 0.827,964,623
110672 0.682,963,385 0.684,381,924 0.696,644,755 0.750,960,965 0.827,626,744
-10°3 0.676,522,149 0.679,157,691 0.695,478,970 0.750,957,398 0.827,626,464
1074 0.676,000,130 0.679,047,258 0.695,478,939 0.750,957,896 "
-107° 0.675,989,168 " ” " "
1078 0.675,989,168 ” " " "
-0.3 YNIY© o o 0 c 0
0.2 0.059 x 1078 0.060 x 1078 0.059 x 1074 0.051 x 1072 0.107

-107! 0.301 x 10°8 0.300 x 1070 0.203 x 1074 0.237 x 102 0.119

-1072 0.778 x 1078 0.768 x 1078 0.671 x 1074 0.325 x 1072 ”

-1073 0.797 x 10°8 0.780 x 1078 0.658 x 10™ g ”

-1074 0.781 x 1078 0.762 x 1078 " ” o
-107° 0.763 x 10°8 0.761 x 108 ” r "

-10°6

o~

”

[z
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FIGURE 1 - COMPARISON OF SOLUTION MAGNITUDE DIFFERENCES.
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FIGURE 2 - PHASE INFORMATION.
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FIGURE 3 - EFFECT OF ¢ ON THE ACCURACY OF THE APPROXIMATE SOLUTION
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